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Coherent-state path-integral simulation of many-particle systems

M. Beccaria, B. Allés, and F. Farchioni
Dipartimento di Fisica dell’Universita` and Istituto Nazionale de Fisica Nucleare, Piazza Torricelli 2, I-56100 Pisa, Italy

~Received 18 April 1996!

The coherent-state path-integral formulation of certain many-particle systems allows for their nonperturba-
tive study by the techniques of lattice field theory. In this paper we exploit this strategy by simulating the
diffusion-controlled reactionA1A→0 in one dimension where an exact solution exists. Our results are also
consistent with general renormalization-group-based predictions, thus clarifying the continuum limit of the
action of the problem. We also make an analytical study of the exactly solvable harmonic oscillator problem.
@S1063-651X~97!01101-X#
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I. INTRODUCTION

An approach to the nonperturbative definition and stu
of quantum field theories is given by path-integral quanti
tion. Lattice field theory is based on such a formulation. T
functional integral is built from the infinitesimal propagatio
of particles among states of a definite basis. If the Ham
tonian is given in terms of annihilation and creation ope
tors, then the most natural~overcomplete! basis is that of
coherent states@1,2#.

A relevant example is that of the so-called diffusio
controlled chemical reactions@3#. These are physical pro
cesses describingN-particle speciesA1, A2 , . . . diffusing
on a lattice and undergoing annihilation-creation reaction
the form

n1A11 . . .1nNAN→m1A11 . . .1mNAN . ~1.1!

The configuration space of this system has a structure res
bling that of the Fock space of relativistic particles. The tim
evolution of the probability distribution of the particles
described by a master equation and the evolution operat
built from a non-Hermitian Fokker-PlanckHamiltonianwrit-
ten in terms of creation-annihilation operators. Statistical
erages are traded in a standard way for quantum expect
values@4# and the~nonunitary! evolution may be explicitly
solved by a coherent-state path integral@5#.

Renormalization-group techniques can be used: this
proach has been applied successfully to theformal con-
tinuum limit of several models, a typical prediction being t
behavior of the particle densities as a function of time@6–9#.

However, the comparison with numerical data is oft
nontrivial because numerical simulations are performed
der conditions slightly but significantly different than tho
of the analytic computations. Typical examples may be
infinite reaction rate or a limited single site occupancy~see
@10# for a study of the finite rate effects!.

An interesting alternative to the direct microscopic sim
lation is to study the coherent-state formulation by the us
tools of lattice field theory. This allows for a direct verifica
tion of the renormalized perturbation theory results.

This strategy faces several drawbacks. First the actio
the path integral is complex as the Fokker-Planck Ham
tonian is not Hermitian. The convergence properties of sim
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lation algorithms for complex actions in interacting mode
are in general not guaranteed@11#. On the other hand, the
continuum limit of the discrete model presents some am
guities which may be seen as operator ordering. It is not c
a priori whether these ambiguities can modify the resulti
measurable quantities.

The aim of this paper is twofold. First we shall analy
analytically the behavior of an exactly solvable model: t
free coherent-state path integral from the point of view of
numerical simulation. Secondly we shall perform an expli
simulation on a nontrivial model, the reactionA1A→0, in
order to verify the relevance of the above-mentioned pr
lems.

In Sec. II we shall review the coherent-state path-integ
formulation of a problem defined by a Hamiltonian in term
of creation and annihilation operators. We will introduce t
ambiguity in the continuum limit and will show that tw
actions ~identical in that limit but different in the discret
version of the theory! display a rather opposite behavior u
der the Langevin algorithm during the simulation. In Sec.
we will introduce theA1A→0 problem and the numerica
simulation together with its results.

II. COHERENT-STATE PATH INTEGRAL

Let us consider a one-dimensional quantum harmonic
cillator with unit pulsation and Hamiltonian

Ĥ5â†â1
1

2
, ~2.1!

where â† and â are creation and annihilation operators s
isfying the canonical commutation relation

@ â,â†#51. ~2.2!

Coherent statesuz& are defined as eigenvectors of the d
struction operator

uz&5exp~2uzu2/21zâ†!u0&, ~2.3!

âuz&5zuz&, ~2.4!

whereu0& is the vacuum. With this normalization we have
3870 © 1997 The American Physical Society
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^wuz&5exp~w̄z2uzu2/22uwu2/2!, ~2.5!

15E d2z

p
uz&^zu. ~2.6!

The Euclidean propagator for an arbitrary Hamiltoni
Ĥ(â,â†) is

U~z9,tuz8,0!5^z9uexp~2tĤ !uz8&, ~2.7!

and its expansion whent→0 can be used to give a lattic
path-integral definition ofU,

U ~N!~z9,tuz8,0!5E d2z1•••d
2zN

pN

3exp(
n50

N H 12 @~ z̄n112 z̄n!zn

2 z̄n11~zn112zn!#2eH~ z̄n11 ,zn!J ,
~2.8!

where

z05z8, zN115z9, ~2.9!

e~N11!5t, ~2.10!

H~w̄,z!5^wuHuz&/^wuz&. ~2.11!

The limit

lim
N→`

U ~N!5U ~2.12!

is justified in terms of Trotter’s formula just as in the usu
coordinate basis path integral. The formal continuum limit
the above functional integral is often written

U5E DzDz̄e2S, S5E dtH 12 @2 ż̄z1 z̄ż#1H~ z̄,z!J ,
~2.13!

and it is used as a starting point for subsequent analysis,
perturbation expansion. However, it must be kept in m
that the above expression stands for the lattice action

S~N!5 (
n50

N H 12 @2~ z̄n112 z̄n!zn1 z̄n11~zn112zn!#

1eH~ z̄n11 ,zn!J , ~2.14!

and not for the naive discretization

S̃~N!5 (
n50

N H 12 @2~ z̄n112 z̄n!zn1 z̄n~zn112zn!#

1eH~ z̄n11 ,zn!J , ~2.15!
l
f

g.,
d

the difference being the lattice operator

dS~N!5
1

2(n50

N

uzn112znu2. ~2.16!

The relevance of the above term was already pointed ou
@12# in the study of the harmonic oscillator and the trace

Tr~e2bĤ!5E d2z

p
^zue2bĤuz&, ~2.17!

which is associated to the path integral with periodic boun
ary conditions. In this paper we shall be concerned with t
Feynman propagatorU(z9,tuz8,0) with fixed boundary con-
ditions. The initial stateuz8& contains all the information
about the initial set up of the diffusive system we want
study. The final stateuz9& is somewhat more arbitrary. The
effect of the different discretizations will be examined b
computingU and also a relevant two-point function of the
â and â† operators. Of course, the interest inS̃ is purely
mathematical since that form of the action has no physic
relevance.

Apart from the subtleties associated to the discretizatio
there is another difficulty. In realistic applications, both th
above actions are complex and their nonperturbative~nu-
merical! study is difficult. A possible approach to thei
Monte Carlo simulation relies on the Langevin algorithm. I
the following subsections we shall show for the free theo
that actionS(N) is stable under this algorithm and can giv
sensible results; on the other hand, a simulation with t
action S̃(N) would be unstable.

A. Structure of the action

Apart from additive constants, the action of the harmon
oscillator is

S~N!5 (
n50

N H 12 uzn11u21
1

2
uznu22~12e!z̄n11znJ .

~2.18!

On the other hand, the modified action is

S̃~N!5 (
n50

N21 H 12 z̄nzn111~e21/2!z̄n11znJ . ~2.19!

We could introduce real fields suitable for the simulation, b
for analytical computations we prefer to work with thez and
z̄ variables and consider apart from constants

S5 z̄TAz1C̄Tz1 z̄TB. ~2.20!

Let us give the expression ofA, A21, B, andC̄ for the two
actionsS and S̃. For the actionS we have

A5S 1 0

2u 1

2u 1

0 � �

D , A215S 1 0

u 1

u2 u 1

•••

D ,
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B5S 2uz8

0

A
D , C̄5S A

0

2u z̄9
D , ~2.21!

whereu512e. For the actionS̃ we have

A5S 0 a 0

b 0 a

b 0 �

0 � �

D , B5S bz8

0

A

0

az9

D , C̄5S a z̄8

0

A

0

b z̄9

D ,

~2.22!

wherea51/2 andb5e21/2. The inverse matrix exists onl
for evenN and is given by the formula

Amn
2155

0, n2m even

~21!~n2m21!/2
1

b S a

b D ~n2m21!/2

, n2m.0

~21!~m2n21!/2
1

a S b

a D ~m2n21!/2

, n2m,0.

~2.23!

B. Spectrum and Langevin simulation

The Langevin algorithm for a lattice field theory is a wa
of generating field configurations distributed according to
discrete measure

Df5e2S~f1 ,•••,fN!)
n51

N

dfn , ~2.24!

wherefn are the discrete real degrees of freedom in
lattice approximation. If we consider the flat case~so df is
the flat Lebesgue measure! the algorithm introduces a ficti
tious timet and evolves the configurationsf (t) according to
the Markov chain

fk
~t1Dt!5fk

~t!2Dt
]S

]fk
~f~t!!1A2Dtjk

~t! , ~2.25!

wherej (t) is a white Gaussian noise with two-point correl
tion matrix

^jk
~t!jk8

~t8!&5dkk8dtt8. ~2.26!

These configurations tend to be distributed according to
above weight in the limitDt→0. If the fields are real, bu
the action is complex, we can still perform the algorith
updates by complexifying the field~but not the noise!. The
conditions under which this scheme gives correct results
an interacting theory with complex action are not known
general~see@11# for a mathematical discussion and an e
plicit application to the quantized Hall effect!.

To start with, let us check when the free action is c
rectly simulated. We will see that even in this trivial case t
previous algorithm works for the actionS and not for the
S̃. For the above quadratic action the following statem
e

e

e

r

-

-
e

t

holds: then-point correlation function̂f(t1)f(t2)•••& con-
verges to its proper value in the limitDt→0 if and only if
the spectrum of 12DtA is strictly inside the unit circle in
this limit. To illustrate this statement let us show the result
a Langevin simulation on the one-point function whose co
tinuum value vanishes. The Langevin equation is~we use an
integer number to label the discrete fictitious time!

^f~n11!&5M ^f~n!&, M512DtA. ~2.27!

Hence

^f~n!&5Mn^f~0!&. ~2.28!

On the other hand, if the maximum modulus of the set
eigenvalues ofM is less than 1 thenMnv→0 asn→`. This
follows from the fact thatM is always similar to the direc
sum of Jordan blocks associated to the eigenvaluesl and of
the form

I ~l!5S l 1 0 . . .

0 l 1 . . .

0 0 l . . .
D , ~2.29!

and it is easy to see thatI (l)n→0 if n→` and ulu,1.
Let us examine the spectral structure of the actionsS and

S̃. In the case ofS it is straightforward to show that

det~A1g!5~11g!N, ~2.30!

which implies that the spectrum of 12DtA is the single
point

l512Dt. ~2.31!

This result in turn implies stability of the Langevin algorith
according to the above remarks. The analogous study for
action S̃(N) is more complicated. The determinant

pN~g!5det~g1A! ~2.32!

satisfies

pN~g!5gpN21~g!2abpN22~g!, ~2.33!

p051, ~2.34!

p15g. ~2.35!

The solution is

pN~g!5
1

ab2m2 S 2mN121
~ab!N11

mN D ,
m5

g1Ag224ab

2
, ~2.36!

and the zeroes ofpN(g) are given by the equation

pN~g!50⇒S ab

m2 D N11

51. ~2.37!
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Notice that ifg is a solution, so is2g. The eigenvalues o
12DtA may be written in the forml512Dtg whereg
are determined by the equationpN(g)50. All the nonzero
roots of this equation appear in doublets6g. This means
that the spectrum of 12DtA cannot be strictly inside the
unit circle.

In the Appendix, we compute the Feynman propaga
and a two-point function by using the two different actio
showing further problems in the physical meaning of t
action S̃.

III. DIFFUSION-CONTROLLED CHEMICAL REACTIONS

A. Field theoretical formulation

Let us now turn to an explicit nontrivial example in ord
to show that the direct simulation of the coherent-state p
integral is feasible. We have considered one of the diffusi
controlled chemical reactions of@7#. It describes equal par
ticles A diffusing isotropically in one dimension and inte
acting by means of the reaction

A1A→0. ~3.1!

Mean field theory does not apply for dimensiond<2 and
fluctuations are very relevant.

Let us briefly review how the coherent-state path integ
arises in the treatment of this problem. This procedure is
now standard and we recall it in a few lines. LetP($n%) be
the probability distribution of the particle configuration$n%.
The notation is$n%5(n1 , . . . ,nL) for a lattice with sideL.
Let us set to unity the spatial lattice spacing; the evolution
P is described by the master equation

]

]t
P~$n%,t !5V̂P~$n%,t !, ~3.2!

where the operatorV̂ is

V̂5D(
i , j

@~nj11!T̂i
21T̂j2ni #

1l(
i

@~ni12!~ni11!T̂i
22ni~ni21!#. ~3.3!

In this equationD is the diffusion constant andl is the
annihilation rate constant. The sum inj runs over the neigh-
bors of the sitei and the shift operatorT̂ is defined by

T̂i
kP~$n%,t !5P~n1 ,n2 , . . . ,ni21 ,ni1k,ni11 , . . . ,t !.

~3.4!

~We shall be concerned with hypercubic lattices where
neighbors of a siteP are the sites at distance fromP equal to
the lattice spacing.! To each site we associate a quantu
harmonic oscillator with its creation-annihilation operato
âi and âi

† . We then introduce the state

uf~ t !&5(
$n%

P~$n%,t !)
i

~ âi
†!niu0&. ~3.5!

We can call such a state a probabilistic state in order
emphasize the property
r

th
-

l
y

f

e

o

(
$n%

P~$n%,t !51. ~3.6!

The time evolution ofuf& is governed by the Schro¨dinger
equation

2
]

]t
uf~ t !&5Ĥuf~ t !&, ~3.7!

with Hamiltonian

Ĥ52D(
i , j

âi
†~ â j2âi !2l(

i
@12~ âi

†!2#âi
2 . ~3.8!

Finally, one introduces the so-called projection state

^Pu5^0u)
i
eâi, ~3.9!

such that the statistical averages satisfy

(
$n%

P~$n%,t !F~$n%!5^PuF̂e2tĤuf~0!&. ~3.10!

GivenF($n%), the explicit form ofF̂ is obtained substituting
n by â†â. Moreover, if F̂ is normal ordered, then the cre
ation operators may be skipped because

^Puâ†5^0ueââ†e2âeâ5^0u~ â†1@ â,â†# !eâ5^Pu.
~3.11!

For instance, the density operator is just the operator

r̂5
1

L(n ân . ~3.12!

Let us remark that for any probabilisticuf& we have

^Pue2tĤuf&51, ~3.13!

the probability states form an overcomplete basis of the s
space, hence we obtain the important probability conse
tion relation

^PuĤ50. ~3.14!

Our goal is to determine the anomalous exponentg of the
density of particlesr(t). If D is the diffusion constant, the
theoretical prediction for the density in one dimension and
the t→` limit is @13#

lim
t→1`

@~Dt !gr~ t !#5A, A5
1

A8p
, g5

1

2
. ~3.15!

We consider an initial state such that the occupance proba
ity distribution at each site is Poissonian with average oc
pation numbern̄. The initial state is thus proportional to
coherent state withz5n̄ since

e2 n̄(
k

n̄k

k!
~ âk†!ku0&5e2 n̄1â†n̄u0&5e2 n̄1 n̄2/2un̄&.

~3.16!
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We can write

r~ t !5^Pur̂exp~2tĤ !un̄&e2 n̄1 n̄2/2

5
^Puexp@2~ t f2t !Ĥ#r̂exp~2tĤ !un̄&

^Puexp~2t f Ĥ !un̄&
. ~3.17!

The above quantity may be computed nonperturbatively b
Monte Carlo simulation on a lattice with temporal extensi
t f and by measuring at each update the value ofr as a func-
tion of time. The evolution in time up tot f may be included
precisely because of result~3.14!.

B. Numerical simulation in one spatial dimension

We made use of the actionS in order to perform the
Monte Carlo simulation. The integration variables we
called c and c̄. We used a rectangular lattice with spat
and temporal sizesL andT, respectively. The complex ac
tion is

S@c,c̄,L,T#5 (
x51

L H (
t51

T F12 c̄ t11,x~c t11,x2c t,x!

2
1

2
c t,x~ c̄ t11,x2c̄ t,x!2eDc̄ t11,x¹̂x

2c t,x

2el~12c̄ t11,x
2 !c t,x

2 G2cN,xJ . ~3.18!

The term ¹̂x
2c t,x is the finite differencec t,x1122c t,x

1c t,x21. The asymptotic state is the vacuum which we p
at timeT11; the projection state is at timeN. We have said
that the action is complex: this means that the imaginary
does not cancel if we defineq and p @we omit the (t,x)
label# by

c5q1 ip, c̄5q2 ip, ~3.19!

and write the action as a function of (q,p). The Langevin
equations are

]q

]t
52

]S

]q
1j~q!, ~3.20!

]p

]t
52

]S

]p
1j~p!, ~3.21!

with independent noisesj (q) and j (p). Since the action is
complex, the variables (q,p) may wander in the complex
plane. In terms of the~also! complex variables (c,c̄) we
have the Langevin equations

]c

]t
522

]S

]c̄
1j~q!1 i j~p!, ~3.22!

]c̄

]t
522

]S

]c
1j~q!2 i j~p!. ~3.23!
a

l

t

it

The discrete form of these equations describes the upda
the configuration from the Langevin timen to the time
n11. They are

c t,x
~n11!5c t,x

~n!12DtF̄ t,x~c~n!,c̄~n!!1A2Dt~j t,x
~q!1 i j t,x

~p!!,
~3.24!

c̄ t,x
~n11!5c̄ t,x

~n!12DtFt,x~c~n!,c̄~n!!1A2Dt~j t,x
~q!2 i j t,x

~p!!,
~3.25!

where

Ft,x5c̄ t,x2c̄ t11,x1eD~2c̄ t11,x2c̄ t11,x212c̄ t11,x11!

22elc t,x~12c̄ t11,x
2 !2d t,N , ~3.26!

F̄ t,x5c t,x2c t21,x1eD~2c t21,x2c t21,x212c t21,x11!

12elc̄ t,xc t21,x
2 . ~3.27!

We remark the very important fact thatF̄ÞF* . We assume
periodic boundary conditions in the spatial direction. On t
temporal boundaryt5T we have setc̄ to zero. At t50 we
assume the above-mentioned coherent stateun̄&.

As a minor point, we would like to stress a well know
property of the Langevin algorithm. The only required ma
ematical properties of the Gaussian noisej are its first two
moments. Therefore instead of a normal Gaussian rand
number we can useA3(2u21) whereu is a random number
with flat distribution in@0,1#. This trick makes the simula
tion pretty faster.

Moreover, concerning the issue of numerical stability,
remark that some runs were performed by using single p
cision arithmetics, showing no apparent discrepancy with
double precision results.

IV. RESULTS AND DISCUSSION

For the numerical simulation we have considered a lat
with L3T5803384. We chose a nonlinear couplin
l50.001, a physical time stepe50.01, and a dimensionles
diffusion constantD50.01.

We ran the simulation starting from several values of
initial density to check that the asymptotic density amplitu
is independent of the initial density. We performed abo
107 updates with the Langevin time stepDt50.0025. Mea-
surements were separated by 104 decorrelation sweeps.

Concerning the statistical errors, we found that the intr
sic standard deviation ofr(t) ~the raw Monte Carlo fluctua-
tions of data! increases roughly ast1/4. @Let us remark that at
t50 the densityr(t) is bounded to assume the fixedr0
value. It is perfectly natural to have a decreasing intrin
variance at smallt.# The standard deviation must be co
rected with the residual autocorrelation of the samples wh
we found to depend very little ont. The resulting total errors
are very small on the scale of the following figures and th
are not shown. We also remark that the values ofr(t) cor-
responding to differentt are also rather uncorrelated becau
of self-averaging being the results of spatial averages.

In Fig. 1, we collect the time behavior of the density f
different initial densities. The fact that error bars are ve
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small can be seen by the rather small fluctuations of
curves.

In Fig. 2 we show the behavior of the effective amplitu
r(t)At. The imaginary part of the density was always neg
gible.

In Fig. 3 we show as an example the average value
Imc(t) and finally in Fig. 4 we show a portion of a typica
time history from which we extractedr(t).

Data reproduce well the exact21/2 exponent. Concern
ing the amplitudeA, the theoretical universal amplitude
19.95 in our units whereas in the figure the various cur
seem to settle around 18. This value is chosen as follows
see that the density profiles in Fig. 2 show two differe
qualitative behaviors, some of them are monotonically
creasing with time, whereas the others rise and then s
decreasing. The separatrix curve corresponds to the a
quoted asymptotic value. The 10% discrepancy~or better the
nonnegligible sensitivity upon the initial density! may be ex-
plained in terms of the systematic errors of the simulat
which possibly changeA. They are the finite Langevin time
stepDt, the finite time spacinge, and the finite spatial di-
mensionL of the lattice. Moreover, the crossover to the a

FIG. 2. Effective amplituder(t)At. Same values of the initia
density as in Figure 1.

FIG. 1. Time behavior ofr(t) starting from the initial densities
2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5, and 4.7
e

-

of

s
e
t
-
rt
ve

n

-

ymptotic regime occurs at a time which depends on the
tial density.

Finally, some remarks are in order concerning the use
the Langevin algorithm in order to study criticality. In prin
ciple, one could raise the question of which is the univers
ity class of our model at finiteDt. Actually, we cannot ex-
change the two limitsDt→0 and T→`. The Langevin
algorithm simulates exactly an action which differs from t
starting one by terms proportional to powers ofDt. Their
contribution can alter the asymptotic critical behavior. Ho
ever, at fixedT, we can sendDt to zero and recover the
correct results. After all, the spurious terms are associate
small bare couplings whose effect on the reaction may
seen only after enough time.

V. CONCLUSIONS

In this paper we have studied the feasibility of the dire
nonperturbative study of a particular kind of many-bo
theory which can be formulated in terms of a quantum fi
theory. We have verified on a specific example that
method gives correct results and that it is stable, a prop
which was far from obvious in the interacting case. One
the important features of our results is that the method can

FIG. 3. Average Imc(t) taken from the run atr(0)52.0.

FIG. 4. Time history of r(100) taken from the run a
r(0)52.0.
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straightforwardly extended to more complicated proces
including higher space dimension, many species, ma
particle collisions; the only change is in the analytical fo
of the action.
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APPENDIX: THE FEYNMAN PROPAGATOR

We use the formula

E e2 z̄Az2C̄z2 z̄B)
i51

N
d2zi
p

5
1

detA
exp~C̄A21B!, ~A1!

and obtain for the actionS

^z9ue2tĤuz8&5expS 2
1

2
uz8u22

1

2
uz9u21uN11z̄9z8D .

~A2!

Hence, whenN→` with e(N11)5t we get back the cor-
rect continuum result

^z9ue2tĤuz8&5expS 2
1

2
uz8u22

1

2
uz9u21e2tz̄9z8D .

~A3!

The same computation for the actionS̃ is performed by using

detA5pN~0!5~2ab!N/2, ~A4!

C̄A21B5~21!N/211FbS b

a D N/2z̄9z81aS a

b D N/2z̄8z9G ,
~A5!

and we obtain the asymptotic form whenN→`

U ~N!;
et

2N
expH 12 e2tz̄9z82

1

2
etz̄8z9J→0, ~A6!

which is not the correct result.

1. The two-point function

We study the two-point function (t2.t1)

G~z9,t f uz8,t i !5
1

U~z9,t f uz8,t i !
^z9uU~ t f2t2!â

†U~ t22t1!

3âU~ t12t i !uz8&, U~ t !5e2tH. ~A7!

By exploiting the fact that

U~2t !âU~ t !5âe2t, U~2t !â†U~ t !5â†et, ~A8!

we obtain easily

G~z9,t f uz8,t i !5et22t12Tz̄9z8, T5t f2t i . ~A9!
s
y-

-

Let us considerz85z951, in terms of the matrixA and the
vectorsC̄ andB, the relevant expectation value is

^z̄nz1&5~A21!1n1~A21B!1~C̄
TA21!n , n.1.

~A10!

Let us begin withS(N), we have

~A21B!152uz8, C̄TA215S 2uN

2uN21

A
D z̄9. ~A11!

The correlation function is

^z̄nz1&5 z̄9z8uN2n12

5 z̄9z8S 12
T

N11D
N122t~N11!/T

, n5
t

T
~N11!,

~A12!

and

lim
N→`

^ z̄nz1&5 z̄9z8et2T, ~A13!

which is the correct result. For the actionS̃, we have explic-
itly

~A21!1n5H 0, odd n

~21!n/211
an/221

bn/2 , even n,
~A14!

~A21B!15~21!N/211S a

b D N/2z9, ~A15!

and

~C̄A21!n55
~21!N/211~21!~n21!/2S b

a D ~N2n11!/2

z̄9,

odd n

~21!n/221S a

b D n/2z̄8, even n.

~A16!

The asymptotic behavior of the two-point functio
^ z̄(t)z(0)& is then

uz9u2et ~A17!

for oddn5t/e, and

et~z9z̄8eT22! ~A18!

for even n. In other words, the continuum limit does no
exist.
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