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Coherent-state path-integral simulation of many-particle systems

M. Beccaria, B. Alles, and F. Farchioni
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The coherent-state path-integral formulation of certain many-particle systems allows for their nonperturba-
tive study by the techniques of lattice field theory. In this paper we exploit this strategy by simulating the
diffusion-controlled reactio®+A—0 in one dimension where an exact solution exists. Our results are also
consistent with general renormalization-group-based predictions, thus clarifying the continuum limit of the
action of the problem. We also make an analytical study of the exactly solvable harmonic oscillator problem.
[S1063-651%97)01101-X

PACS numbd(s): 05.50:+q, 03.65-w

I. INTRODUCTION lation algorithms for complex actions in interacting models
are in general not guaranteg¢til]. On the other hand, the

An approach to the nonperturbative definition and studycontinuum limit of the discrete model presents some ambi-
of quantum field theories is given by path-integral quantiza-guities which may be seen as operator ordering. It is not clear
tion. Lattice field theory is based on such a formulation. Thea priori whether these ambiguities can modify the resulting
functional integral is built from the infinitesimal propagation measurable quantities.
of particles among states of a definite basis. If the Hamil- The aim of this paper is twofold. First we shall analyze
tonian is given in terms of annihilation and creation opera-analytically the behavior of an exactly solvable model: the
tors, then the most naturgbvercompletg basis is that of free coherent-state path integral from the point of view of its
coherent statefl,2]. numerical simulation. Secondly we shall perform an explicit

A relevant example is that of the so-called diffusion- simulation on a nontrivial model, the reactién- A—0, in
controlled chemical reaction8]. These are physical pro- order to verify the relevance of the above-mentioned prob-

cesses describiniyl-particle species\;, A,, ... diffusing lems.
on a lattice and undergoing annihilation-creation reactions of In Sec. Il we shall review the coherent-state path-integral
the form formulation of a problem defined by a Hamiltonian in terms

of creation and annihilation operators. We will introduce the
MA+ .. +FNAV—MA + L +myAy. (1.1)  ambiguity in the continuum limit and will show that two
actions (identical in that limit but different in the discrete
The configuration space of this system has a structure reseriersion of the theonydisplay a rather opposite behavior un-
bling that of the Fock space of relativistic particles. The timeder the Langevin algorithm during the simulation. In Sec. IlI
evolution of the probability distribution of the particles is We will introduce theA+A—0 problem and the numerical
described by a master equation and the evolution operator Bimulation together with its results.
built from a non-Hermitian Fokker-Plandfamiltonianwrit-

ten in terms of creation-annihilation operators. Statistical av- Il. COHERENT-STATE PATH INTEGRAL

erages are traded in a standard way for quantum expectation , . . ,

values[4] and the(nonunitary evolution may be explicitly L€t us consider a one-dimensional quantum harmonic os-

solved by a coherent-state path intedil cillator with unit pulsation and Hamiltonian
Renormalization-group techniques can be used: this ap-

proach has been applied successfully to fbemal con- ﬁ:éTa+E 2.

tinuum limit of several models, a typical prediction being the 2’

behavior of the particle densities as a function of tiige9].

However, the comparison with numerical data is oftenwherea™ anda are creation and annihilation operators sat-
nontrivial because numerical simulations are performed unisfying the canonical commutation relation
der conditions slightly but significantly different than those

of the analytic computations. Typical examples may be an [a,a'=1. 2.2
infinite reaction rate or a limited single site occuparisge
[10] for a study of the finite rate effedts Coherent statesz) are defined as eigenvectors of the de-

An interesting alternative to the direct microscopic simu-Struction operator
lation is to study the coherent-state formulation by the usual

tools of lattice field theory. This allows for a direct verifica- |2)=exp( —|2|?/2+2@")|0), 2.3
tion of the renormalized perturbation theory results.
This strategy faces several drawbacks. First the action in é|z>:z|z), (2.4

the path integral is complex as the Fokker-Planck Hamil-
tonian is not Hermitian. The convergence properties of simuwhere|0) is the vacuum. With this normalization we have
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3871
the difference being the lattice operator
1 N
5S(N):_E |Zn+1_zn|2- (2.16
2n:O

The Euclidean propagator for an arbitrary HamiltonianThe relevance of the above term was already pointed out in

(w|z)=expwz—|z|?12—|w|?/2), (2.5
d?z
1=f7|z>(z|. (2.6
H(a,a") is
U(z”,t|z’,O)=<z”|exp(—tl:|)|z’>, (2.7

and its expansion when—0 can be used to give a lattice

path-integral definition ofJ,

d?z;- - - d?zy

U(N)(Z”,t|Z',0)= f T

N
i
XEXanQ [ E[(ZnJrl_Zn)zn

—Zn11(Zns1—20) ] — €H(Zn41,20) (s

(2.9
where
20=7', N:1=7', (2.9
e(N+1)=t, (2.10
H(w,2) =(w[H[2)/{w]2). (211
The limit
limuN=Uu (2.12

N— oo

is justified in terms of Trotter's formula just as in the usual
coordinate basis path integral. The formal continuum limit of

the above functional integral is often written

u=f DzDze S, s:f dt|%[—‘z€+€£]+H(z_,z)],
(2.13

and it is used as a starting point for subsequent analysis, e.g.,
perturbation expansion. However, it must be kept in mind

that the above expression stands for the lattice action
N1
sW=2 [ S[= @iz Zet Zaia(Zni1—20)]

(2.14

+€H(Z_n+lizn)) ’

and not for the naive discretization

N

~ 1 _ _ _
S(N):go [ E[_(Zn+l_zn)zn+zn(zn+1_zn)]

+6H(Z_n+1,Zn)}, (2.19

[12] in the study of the harmonic oscillator and the trace

2

Tr(e*ﬁ'q)z f d—7TZ<z|e*3'q|z>, (2.1

which is associated to the path integral with periodic bound-
ary conditions. In this paper we shall be concerned with the
Feynman propagatdd (z”,t|z’,0) with fixed boundary con-
ditions. The initial statelz’) contains all the information
about the initial set up of the diffusive system we want to
study. The final stat¢z”) is somewhat more arbitrary. The
effect of the different discretizations will be examined by
computingU and also a relevant two-point function of the
a and a' operators. Of course, the interest $his purely
mathematical since that form of the action has no physical
relevance.

Apart from the subtleties associated to the discretization,
there is another difficulty. In realistic applications, both the
above actions are complex and their nonperturbatve
merica) study is difficult. A possible approach to their
Monte Carlo simulation relies on the Langevin algorithm. In
the following subsections we shall show for the free theory
that actionS™N) is stable under this algorithm and can give
sensible results; on the other hand, a simulation with the
actionS™ would be unstable.

A. Structure of the action

Apart from additive constants, the action of the harmonic
oscillator is

(N) (1 2 Lo —
S :E _|Zn+1| +_|Zn| —(1—€)zZn412,;-
0| 2 2

n=

(2.18

On the other hand, the modified action is

N—1
~ 1 _
s<N>=n§:§O (Eznzn+1+(e—1/2)zn+lzn]. (2.19

We could introduce real fields suitable for the simulation, but

for analytical computations we prefer to work with thand

z variables and consider apart from constants
S=7'Az+CTz+7Z'B. (2.20

Let us give the expression &, AL B, andC for the two

actionsS andS. For the actiorS we have

1 0 1 0
Al -6 1 At 6
B -6 1 ’ | @2 1 ;
0
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— 07’ : holds: then-point correlation functiod ¢(t1) ¢(t,) - - - ) con-
verges to its proper value in the limk7—0 if and only if

B= 0 , C= O_ ' (2.2 the spectrum of + A7A is strictly inside the unit circle in
: - 07" this limit. To illustrate this statement let us show the result of
o~ a Langevin simulation on the one-point function whose con-
where #=1— €. For the actiorS we have tinuum value vanishes. The Langevin equatiofwe use an
gz’ oz integer number to label the discrete fictitious time
0 0
. 0 0 (M DY=M(p™), M=1-A7A.  (2.27)
B 0 «a : = | .
A= g 0 .| B=| ¢ |, C=[ |, Hence
0 S 0 0 () 0)
. . — ny\_pqn
- 57 (¢M)y=M" (). (2.28

(222 On the other hand, if the maximum modulus of the set of
wherea=1/2 andB= e— 1/2. The inverse matrix exists only €igenvalues oM is less than 1 theM" —0 asn—c. This

for evenN and iS given by the formu'a fO”OWS from the faCt thaM iS aIWayS Similar to the dil’eCt
sum of Jordan blocks associated to the eigenvaluasd of
(0, n—m even the form
(n—m—1)/2
. (—l)(”mm%(%) , n-m>0 AN 10
A r=/¢ IM=(0 N 1 ..., (2.29
(m—n—-1)/2
(_1)(m—n—1)/2;(§) . h—m<o. 0 0 A
\

(2.23 and it is easy to see thaf\)"—0 if n—c and|\|<1.
__ Let us examine the spectral structure of the act®rsd

B. Spectrum and Langevin simulation S. In the case of it is straightforward to show that

The Langevin algorithm for a lattice field theory is a way defA+y)=(1+ N, (2.30
of generating field configurations distributed according to the
discrete measure which implies that the spectrum of-1A7A is the single
point
N
Dg=e W] dgy, (2.24 AN=1-A7, (2.3)

el his result in turn implies stability of the Langevin algorithm

where ¢,, are the discrete real degrees of freedom in th ;
lattice approximation. If we consider the flat case d¢ is according to the above remarks. The analogous study for the

the flat Lebesgue measlithe algorithm introduces a ficti- actionS™") is more complicated. The determinant
tious timer and evolves the configuratiogs™ according to

the Markov chain pn(y)=de(y+A) (2.32
S satisfies
K=~ AT (#)+2ATED (229
K Pn(Y) = vPn-1(Y) — @BPn-2(7), (2.33
where&(” is a white Gaussian noise with two-point correla- B
tion matrix Po=1, (2.34
(EDED) = B B, (2.2 P1=v. (239
These configurations tend to be distributed according to th-el_he solution is
above weight in the limitA 7— 0. If the fields are real, but 1 (aB)N*1
the action is complex, we can still perform the algorithm pN(?’):—z( —puNt2 e —— ],
updates by complexifying the fieltbut not the noisg The af—p K
conditions under which this scheme gives correct results for
an interacting theory with complex action are not known in _ytNy —4ap (2.36
general(see[11] for a mathematical discussion and an ex- K= 2 P

plicit application to the quantized Hall effect
To start with, let us check when the free action is cor-and the zeroes gfy(y) are given by the equation

rectly simulated. We will see that even in this trivial case the

previous algorithm works for the actio® and not for the

o N+1
S. For the above quadratic action the following statement pN(y):Oﬁ(F) =1 (237
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Notice that ify is a solution, so is- y. The eigenvalues of
1—A7A may be written in the formh=1—A7y wherey > P({n})=1. (3.9
are determined by the equatigy(y)=0. All the nonzero tn}
roots of this equation appear in doubletsy. This means The time evolution ofl¢) is governed by the Schdinger
that the spectrum of £ A7A cannot be strictly inside the equation
unit circle.
In the Appendix, we compute the Feynman propagator J e
and a two-point function by using the two different actions B E|¢(t)>_H|¢(t)>’ 37

showing further problems in the physical meaning of the
action'S. with Hamiltonian

Il. DIFFUSION-CONTROLLED CHEMICAL REACTIONS F| = —DZ ér(éj—éi)—)\z [l—(ér)z]élz (3.8)
1] i

A. Field theoretical formulation

- - . Finally, one introduces the so-called projection state
Let us now turn to an explicit nontrivial example in order

to show that the direct simulation of the coherent-state path A

integral is feasible. We have considered one of the diffusion- (r1j=(o|[] e, (3.9
controlled chemical reactions ¢¥]. It describes equal par- !
ticles A diffusing isotropically in one dimension and inter-

- i such that the statistical averages satisfy
acting by means of the reaction

A+A—0. (3.0 > PUn}LOF{N) =(IT|Fe " 4(0)).  (3.10
{n}
Mean field theory does not apply for dimensids<2 and ) . - ) _
fluctuations are very relevant. GivenF({n}), the explicit form off is obtained substituting

Let us briefly review how the coherent-state path integrah by a'a. Moreover, ifF is normal ordered, then the cre-
arises in the treatment of this problem. This procedure is byation operators may be skipped because
now standard and we recall it in a few lines. [Bt{n}) be at 3At. —3.3 At rA ATy A
the probability distribution of the particle configurati¢n}. (IfJa"=(0le"a’e %e*=(0[(a'+[a,a'])e*=(II|.
The notation in}=(n4, ... ,n,) for a lattice with sideL. (3.19

Le_t us set Fo unity the spatial lattice ;pacing; the evolution of-, instance, the density operator is just the operator
P is described by the master equation

a p= 12 A 3.1
EP({n},t)=flP({n},t), (3.2 P=L< @n- .12

where the operatoﬁ i Let us remark that for any probabilisti¢p) we have

. s (Ile” ™| ¢)=1, (3.13

Q=DY, [(nj+1)T; *T;—n;]
h the probability states form an overcomplete basis of the state

space, hence we obtain the important probability conserva-

A [(M+2)(M+1)T2=ni(n—1)]. (3.3  tion relation

. o . . (H|H=0. (3.14
In this equationD is the diffusion constant and is the

annihilation rate constant. The sumjimuns over the neigh- Qur goal is to determine the anomalous expongrf the

bors of the sité and the shift operator is defined by density of particlep(t). If D is the diffusion constant, the
~ theoretical prediction for the density in one dimension and in
Ti P({n}!t):P(nlln21 e lnifl!ni+k!ni+l! e !t) thet—oo limit is [13]
(3.9
(We shall be concerned with hypercubic lattices where the lim [(Dt)?p(t)]=A, A= L y= E (3.19
neighbors of a sit® are the sites at distance frofhequal to t—+o V8w 2

the lattice spacing.To each site we associate a quantum _ o _
harmonic oscillator with its creation-annihilation operators\We consider an initial state such that the occupance probabil-
a; anda’ . We then introduce the state ity distribution at each site is Poissonian with average occu-

pation numbem. The initial state is thus proportional to a
coherent state witk=n since

wu»=%l%mkmﬂ<aww» (3.5

—
n" . —afT — =2
e n _ ak ko =g nNtamngy=g n+n /2n i
We can call such a state a probabilistic state in order to Ek k.'( Do) 10) )
emphasize the property (3.16
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We can write The discrete form of these equations describes the update of
A B the configuration from the Langevin time to the time
p(1)=(TI| pexp( —tH)[nye "+ 1712 n+1. They are

_ (I]exg — (t—)H]pexp —tH)[n) 319 (V= (M4 28 7F (™, ™) + 2R T(ED +TER),

(IT|exp(— t¢H) [y - (3.24
1)

The above quantity may be computed nonperturbatively by a YOV = g+ 28 7F (™ g0 +2A (£ - ER),

Monte Carlo simulation on a lattice with temporal extension (3-25)

t; and by measuring at each update the valug a6 a func-
tion of time. The evolution in time up to may be included
precisely because of resy®.14).

where

tx— lpt,x_ ¢t+l,x+ GD(szl,x_ '/’t+l,xfl_ ¢t+l,x+l)
B. Numerical simulation in one spatial dimension —2€eN ¢/,t’)((;|_—It2+ l,x)_ 5t,N= (3.26

We made use of the actio8 in order to perform the _
Monte Carlo_simulation. The integration variables were Fix=ix— ¥i—1x+ €D(2¢_1x— Y- 1x-1— Yi—1x+1)
called ¢ and ». We used a rectangular lattice with spatial — 5
and temporal sizek and T, respectively. The complex ac- T2eN Yok (327
ton is We remark the very important fact thBt= F*. We assume
_ L T periodic boundary conditions in the spatial direction. On the
S¢¢LT]= 21 |Z {2 P 1x(Per1x— i) temporal boundary=T we have set) to zero. Att=0 we
= UE assume the above-mentioned coherent $tate
— — — -, As a minor point, we would like to stress a well known
El/’t,x(‘r//tJr 1x~ Ytx) — €Dy 1xVith x property of the Langevin algorithm. The only required math-
ematical properties of the Gaussian nosare its first two
_ moments. Therefore instead of a normal Gaussian random
—eN(1— ¢ 1,0 Y|~ lﬂN,x] : (3.18  number we can usg3(2u— 1) whereu is a random number
with flat distribution in[0,1]. This trick makes the simula-
- . . . tion pretty faster.
The term Vi‘/’t,X IS the f|n|te- difference wt,xﬂ__z'/’tx Moreover, concerning the issue of numerical stability, we
+ 41 -1 The asymptotic state is the vacuum which we putremark that some runs were performed by using single pre-

attimeT+1; the projection state is at tiné. We have said  ¢ision arithmetics, showing no apparent discrepancy with the
that the action is complex: this means that the imaginary unij, pje precision results.

does not cancel if we defing and p [we omit the €,x)
label] by
IV. RESULTS AND DISCUSSION
Yy=q+ip, ¢=q-ip, (3.19 For the numerical simulation we have considered a lattice
with LXT=80xX384. We chose a nonlinear coupling
and write the action as a function ofj,(p). The Langevin \=0.001, a physical time step=0.01, and a dimensionless

equations are diffusion constant0=0.01.
We ran the simulation starting from several values of the
aq (?S @, initial density to check that the asymptotic density amplitude
97 +é (3.20 is independent of the initial density. We performed about
10" updates with the Langevin time stépr=0.0025. Mea-
ap aS surements were separated by* Hecorrelation sweeps.
e +¢&P), (3.21 Concerning the statistical errors, we found that the intrin-

sic standard deviation gf(t) (the raw Monte Carlo fluctua-

with inde (@) ©) . tions of dataincreases roughly &/ [Let us remark that at
pendent noiseg™ and &' Since the action s _q the densityp(t) is bounded to assume the fixgg
complex, the variablesg(p) may wander in the complex 41ye |t is perfectly natural to have a decreasing intrinsic
plane. In terms of thealsg complex variables #,4) We  variance at smalt.] The standard deviation must be cor-
have the Langevin equations rected with the residual autocorrelation of the samples which
we found to depend very little on The resulting total errors
iy 5 @ s £0) 3.2 are very small on the scale of the following figures and they
or E"'f +HIEY, (322 are not shown. We also remark that the valuep(@) cor-
responding to different are also rather uncorrelated because
— of self-averaging being the results of spatial averages.
I In Fig. 1, we collect the time behavior of the density for

Lo (q) —
ar 2&¢+§ 138 (323 different initial densities. The fact that error bars are very
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p®

0.0

— — - Exact Asymptotic Result

0.0

. . .
100.0 200.0 300.0

400.0

FIG. 1. Time behavior op(t) starting from the initial densities:
2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5, and 4.75.

small can be seen by the rather small fluctuations of th&ia! density.

curves.

p(t)Vt. The imaginary part of the density was always negli-

gible.

In Fig. 3 we show as an example the average value of

0.04 -

0.02

0.00

-0.02

-0.04

-0.06

-0.08

3875

Ui

P

|

2\,

0.0

100.0

. L
200.0 300.0 400.0
t

FIG. 3. Average Iny(t) taken from the run ap(0)=2.0.

ymptotic regime occurs at a time which depends on the ini-

Finally, some remarks are in order concerning the use of
In Fig. 2 we show the behavior of the effective amplitudethe Langevin algorithm in order to study criticality. In prin-

ciple, one could raise the question of which is the universal-

ity class of our model at finit& 7. Actually, we cannot ex-

hange the two limitsA7—0 and T—c. The Langevin

Imy(t) and finally in Fig. 4 we show a portion of a typical algorithm simulates exactly an action which differs from the
starting one by terms proportional to powers of. Their

time history from which we extractegl(t).

Data reproduce well the exaet1/2 exponent. Concern-
ing the amplitudeA, the theoretical universal amplitude is
19.95 in our units whereas in the figure the various curv
seem to settle around 18. This value is chosen as follows:
see that the density profiles in Fig. 2 show two different

qualitative behaviors, some of them are monotonically in-
creasing with time, whereas the others rise and then start
decreasing. The separatrix curve corresponds to the above

quoted asymptotic value. The 10% discrepatmybetter the
nonnegligible sensitivity upon the initial densitynay be ex-
plained in terms of the systematic errors of the simulatio
which possibly changé. They are the finite Langevin time
stepA 7, the finite time spacing, and the finite spatial di-
mensionL of the lattice. Moreover, the crossover to the as-

30.0

contribution can alter the asymptotic critical behavior. How-
ever, at fixedT, we can send\r to zero and recover the
eLorrect results. After all, the spurious terms are associated to
W%mall bare couplings whose effect on the reaction may be
seen only after enough time.

V. CONCLUSIONS

In this paper we have studied the feasibility of the direct
nonperturbative study of a particular kind of many-body
theory which can be formulated in terms of a quantum field
ntheory. We have verified on a specific example that the
method gives correct results and that it is stable, a property
which was far from obvious in the interacting case. One of

the important features of our results is that the method can be

-1

pmyt

e ——

Rey

FIG. 2. Effective amplitudep(t)vt. Same values of the initial

100.0 200.0 300.0
t

density as in Figure 1.

400.0

2.0

0.5

0.0

100.0 200.0

300.0 400.0 500.0
# sweep

FIG. 4. Time history of p(100) taken from the run at
p(0)=2.0.
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straightforwardly extended to more complicated processeket us considez’=z"=1, in terms of the matriXA and the

including higher space dimension, many species, manyyectorsC andB, the relevant expectation value is
particle collisions; the only change is in the analytical form

of the action.
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APPENDIX: THE FEYNMAN PROPAGATOR

We use the formula

J —Z_“Z—a—ﬁﬁ T4 L A, (AL
e i=l7—ﬁexlo( ), (A1)

and obtain for the actio®
—tH 1 2 L o, N
Z'le ZY=exg —=|Z2'|*— =|Z Z2'z7' .
< //| t | /> 2| /| 2| //| +0 + !
(A2)

Hence, wherN—o with e(N+1)=t we get back the cor-
rect continuum result

~ 1 1
(z”|e“”|z’>=ex;{ - §|z’|2— §|z”|2+ e“z”z’).
(A3)

The same computation for the actisris performed by using

detA=py(0)=(—ap)V?,
N/2
B(g) "7+ a

and we obtain the asymptotic form whéh- oo

(Ad)

&7182(_ 1)N/2+1

(A5)

a) N/Z_r "
- 27

B

e' 1 1
UM~ —gexp 56 72"~ 5721 —0,  (AB)

which is not the correct result.

1. The two-point function

We study the two-point functiont{>t,)

G(2" |2 t) = gy (F IVt t)a U (- ty)
xau(t;—t)|z’), U)=e ™. (A7)
By exploiting the fact that
U(-tau(t)=ae!, U(-ta'u)=a'e', (A8)
we obtain easily
G(Z't|2" t)=e2"1" 172", T=t;—t;. (A9)

(znz1)=(A" Y1+ (A71B)4(CTA™Y),, n>1.
(A10)
Let us begin withs), we have
_ gN
(A"1B),=—6z', CTA 1=| —0N"1|Z. (A1)
The correlation function is
<Z_nzl> :721 0N—n+2
o T \N+2-tN+1/T
=72 (1—m) , HIT(N-F].),
(A12)
and
lim (z,z,)=2"2'¢e"" T, (A13)

N—

which is the correct result. For the acti’énwe have explic-
itly

0, oddn
ATy = ni2—1 Al4
(A" )1 (_1)n/2+1W2_, evenn, (AL
N/2
(AlB>1=(—1>”’”l(%) a -
and
] ,8 (N—n+l)/2_
(_1)N/2+1(_1)<n1>/2( Z) Z’
(CA™1),= e
n/2
(_1)n/21(%> Z’, evenn.
\
(A16)

The asymptotic behavior
(z(t)z(0)) is then

of the two-point function

|2"| %" (A17)
for oddn=t/e, and
el(Z’z’e"-2) (A18)

for evenn. In other words, the continuum limit does not
exist.
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